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Summary. Reservoir computing requires two main ingredients: nonlinearity and memory. In 

hardware-based systems these contributions are usually intertwined and can be difficult to optimize. 

We show that by explicitly including task relevant memory timescales, the performance can be 

efficiently tuned. We discuss and compare three ways to tune this memory in reservoir computing 

systems, output-, input-, and internal-delay.  

 

Reservoir computing (RC) has gained substantial interest over the last years due to its simple training 

procedure and its potential for hardware implementation. However, to achieve the desired level of 

performance extensive hyperparameter optimization is usually necessary. In an experimental setting the 

optimization of  parameters of the physical reservoir can be a time consuming process and some parameters 

are inaccessible. In this contribution we will show that by explicitly including task relevant time scales in 

the reservoir computing system the performance can be optimized and thereby the need for hyperparameter 

optimization can be reduced. We refer to explicitly tunable memory when the parameter of interest directly 

influences the memory of the system. For example, in the case of a time-delayed reservoir, the delay-time 

directly determines when past states of the system reenter the nonlinear node and hence on which timescales 

the system remembers past inputs. In contrast, in a random recurrent neural network, the memory is 

influenced more indirectly via parameters such as the spectral radius.  

 

 
 
Figure 1: (a) Sketch of a photonic reservoir computing architecture that is suitable to include input-delay, output-delay or internal-

delay. The 10-step ahead prediction performance for the Mackey-Glass equation of this RC system (with parameters as in [1])  is 

presented as a function of the internal delay (b) and  the output delay (c). The effect of the input delay in (d)  shows also the impact 

of the input scaling parameter in a 2D scan. 

There are various ways in which the memory of a reservoir can be tuned or augmented. Here we will 

discuss two methods which can be applied to any reservoir computing setup, and in the case of a time-

delayed reservoir we will also compare these methods with direct tuning of the internal delay time. Fig.1(a) 

shows a schematic diagram of how the input- and output-delays could be included in a photonic setup. 

The first input-delay approach is to artificially include the memory in the input layer. For a time-series 

prediction task this would mean additionally inputting a delayed version of the input time-series with a 

separate mask and a separate input scaling (Fig1a). As an exemplary reservoir we simulate a delayed map  

(Eq.(1)) describing a semiconductor optical amplifier with a nonlinearity function G(x), coupled to a 

feedback cavity with delay  [1,2]. The term J(k) includes both the normal and the delayed input as sketched 

in Fig.1a. The effect of the input-delay on the 10-step ahead prediction performance of the Mackey-Glass 

equation is depicted in Fig.1d using the normalized root mean square error (NRMSE) as a performance 

measure. The prediction error shows a clear optimum at a specific delay (approx. 10 clock cycles) while 

the input scaling, one hyperparameter, has a much smaller impact. We note that including multiple input 



values from a time-series for prediction tasks is a common practice in machine-learning and statistical 

modelling approaches, and there, deciding which past inputs should be included is then part of the feature 

selection process. In the reservoir computing paradigm, however, we ideally want to decrease the training 

and optimization steps that are necessary, which is why we propose that it is enough to include only one 

delayed input. This introduces only two new hyperparameters, the input-delay and the delayed-input 

scaling, both of which are experimentally easily tunable.  

 

xout(𝑘) = 𝐺[𝐾xout(𝑘 − 𝜏) + 𝐽(𝑘)]                                                      (1) 

 
The second output-delay approach is to include the memory in the output layer by constructing the 

state matrix out of the current states xout(𝑘) of the reservoir and the states of the reservoir some delayed 

steps into the past, i.e. xout(𝑘 − 𝜏o). Fig.1c shows a scan of the performance for different values of the 

output-delay. A clear optimum, again at the characteristic time of 10 clock-cycles, can be seen and a similar 

performance is achieved for the two cases of adding memory to the RC setup. Recently there have been 

various versions of the delayed-output approach but always implemented with a multitude of delayed output 

states [3,4,5,6]. Here, we propose that using only one fixed output-delay is sufficient, thus introducing only 

one new optimization parameter.  

Lastly, we compare the effect of the previous two delay-schemes to the most common scheme of 

feedback-delay time. In delay-based RC this value is commonly chosen equal or close to the input clock 

time T. As can be seen in Fig.1b, tuning the feedback-delay time leads to improved performance over a 

wide range of delay times, with the minimum near 10 times the input clock time. Due to the nonlinear 

interaction of the inputs within the internal feedback loop, the performance is worsened at resonances 

between the feedback delay time  and the input clock time, as described in [7].  

As a conclusion, we show that by explicitly including memory on a timescale relevant for the Mackey-

Glass task, the performance of the RC system is improved. The absolute value of the delay needed for 

optimization strongly depends on the task, which is why an easy tuning possibility is needed in order to 

realize a universal RC setup for many different tasks. All of our three schemes can offer this possibility. 

We also want to mention that the method of externally adding an explicit memory is not limited to the RC 

paradigm but can be applied to other machine learning agents like feedforward networks or statistical 

models.  
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