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Summary. A major advance in Cognitive Science was moving from the study of behavior 

(“behaviorism”) to the study of concepts in-between perception and action (“cognitivism”) in 

terms of information processing concepts. Machine Learning also followed a similar trajectory by 

moving from the study of input/output prediction to the learning of representation [1]. However, 

these studies are centrally focused on Feed Forward Neural Networks, which is inadequate for 

more general Recurrent Neural Networks and other Nonlinear Dynamical Systems where it’s not 

clear how abstract representations should be encoded. I present here a framework inspired by 

conceptors [2] to conceptualize the task of learning representation in Dynamical Systems by 

carefully organizing neural trajectories instead of organizing atemporal neural activations (as done 

classically in Machine Learning). I discuss how this framework applies to Dynamical Systems in 

general, where conceptors are just one entry point to a more general task.   

Classically, the challenge of Learning Representation (LR) consists in extracting abstract/concept-

like encodings of a perceptual input without having access to supervision. The adequacy of these 

encodings can be judged by their capacity to be decoded for regenerating the input. Additionally, these 

encodings need to generalize. It should be possible to interpolate to generate novel meaningful examples.  

The major difficulty for LR in Nonlinear Dynamical Systems (NDS) is that they don’t seem to offer 

an identifiable, controllable neural code. The solution proposed by conceptors is to use the linear 

subspaces of different input-driven neural trajectories as coarse-grained codes. Crucially, this code can be 

used bi-directionally: it can be extracted from input and decoded to regenerate the input. 

To formalize the task, we start with a parametric family of time series 𝑢λ𝑖𝑛𝑝: 

𝑢λ𝑖𝑛𝑝 = g(λ𝑖𝑛𝑝, 𝑣, 𝑤) (1) 

where λ𝑖𝑛𝑝 is the input parameter, an abstract, unobserved concept that has to be inferred, and g is a 

function that mixes the two signals 𝑣 and 𝑤 with λ𝑖𝑛𝑝. Cognitively, λ𝑖𝑛𝑝 could represent an abstract speed 

variable allowing an agent to perceive and produce complex speech signals along a continuum of 

nonlinear distortions. For the cognitive system, I will use a discrete-time Recurrent Neural Network (RNN): 

𝑥(𝑛 + 1) = 𝑡𝑎𝑛ℎ (𝑊𝑥(𝑛) + 𝑊𝑖𝑛. 𝑢λ𝑖𝑛𝑝 (𝑛)) (2)

where 𝑥(𝑛) represents the N-dimensional neural activity at time n ∈ ℕ. W is the N×N connectivity matrix 

and 𝑊𝑖𝑛 is the N×p input matrix expanding the input into the reservoir. For pedagogical purposes, we 

will use a simple linear morphing between two random signals of periodic 3, 𝑢λ𝑖𝑛𝑝(𝑛) = (1 −

λ𝑖𝑛𝑝)𝑣(𝑛) +  λ𝑖𝑛𝑝𝑤(𝑛) sent to a 3-dimensional RNN (Fig.1).  
Conceptor methods allow the input-driven system (2) to be transformed into an autonomous system 

that regenerates the input. First, each input signal from a set 𝐷 = {𝑢λ𝑖
𝑖𝑛𝑝}

𝑖∈𝐼
 of signals can be translated into 

a code 𝐶𝑖. For a signal 𝑖, this code captures the linear subspace spanned by its associated neural trajectory 

(2). Mathematically, this code is a projection matrix on this subspace and can be easily computed [2]. For 

instance, Fig1.D displays conceptors in a specific configuration where they correspond to 2D planes1 

containing the neural trajectory. In higher dimensions, they can be visualized as ellipsoids (Fig1.A) [2]. 

The second step in the encoding phase (Fig.1A, left part) is to compute an additive weight matrix D    

(Fig.1A, green arrows) explicitly trained to reproduce the different trajectories created by the input [2]. 

While the D matrix entrenched2 a set of input-driven dynamics into an autonomous system, each 

conceptor matrix 𝐶𝑖 can be used to address and stabilize a specific one by projecting the dynamics with: 

𝑥(𝑛 + 1) = 𝑪𝒊 𝑡𝑎𝑛ℎ((𝑊 + 𝑫)𝑥(𝑛)) 
 

1 For geometrical interpretability, the RNN has been optimized to produce visually intuitive geometries, where the 

conceptors are projecting on various z-rotations of the the xy plane. In high dimension, this optimization is not 

necessary and interpolation with conceptors works with untrained RNNs (reservoir computers) [2].  
2 D creates a represention of the input within the autonomous RNN. To verify that the representation is appropriate, 

one can check if the input can be approximated by a time-invariant linear transformation on the neural trajectory (2).  
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        We’ve seen that conceptor can be used to encode/decode signals, and we move now to the task of 

LR by looking at their capacity to generalize. More precisely, after learning (the computation of D and the 

𝐶𝑖𝑠), we want the following neural trajectory of an unseen data sample close to the example i: 

𝑥(𝑛 + 1) = 𝑡𝑎𝑛ℎ (𝑊𝑥(𝑛) + 𝑊𝑖𝑛. 𝑢
λ𝑖

𝑖𝑛𝑝
+∆λ𝑖𝑛𝑝(𝑛)) 

 to be approximated by: 

𝑥(𝑛 + 1) = 𝐶𝑖𝑛𝑡𝑒𝑟𝑝 𝑡𝑎𝑛ℎ((𝑊 + 𝐷)𝑥(𝑛)) 

where 𝐶𝑖𝑛𝑡𝑒𝑟𝑝 is an appropriately interpolated code. Following ideas in Machine Learning [1], this code 

can be extracted from compression principles. Indeed, the variability of real-world data as well as our toy 

dataset 𝐷 can be assumed to be encodable with limited variability between trajectories. Work in progress 

[3] shows that dimensionality reduction algorithms (for instance, self-organizing maps) on conceptor 

spaces are enough to uncover a parametrization of a manifold 𝐶(λ𝐶) that correspond to input manifold 

𝑢(λ𝑖𝑛𝑝) (Fig1.A). In our case the conceptor manifold is one-dimensional (Fig1.C). 

        This proposal extends the use cases of conceptors from the manipulation of memories to the learning 

of representations. Additionally, this work points to general challenges of LR with NDS when we analyze 

two distinct roles for conceptors. First, they offer a space for compression to happen online without 

perturbing the unfolding of the dynamic. This space can be used to replace the input-induced perturbation 

by ∆λ𝑖𝑛𝑝 (4) by a conceptor perturbation (5). These phenomena can be analyzed with perturbation 

analysis [3]. The second role is to stabilize the interpolated trajectory. Indeed (5) pushes the NDS into a 

region where it was not trained to behave autonomously, and the induced trajectory might be unstable. 

This requirement is novel and should be further studied. Finally, this work opens new questions around 

this new task of LR with NDS. As opposed to FeedForward Neural Networks, which fix the direction of 

the flow of information (from encoding to decoding), RNNs and NDS don’t have this restriction: 

encoding and decoding can happen simultaneously, opening the doors to new questions about cognitive 

systems coupled with their environment. 
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Figure 1. A. Samples (blue crosses) from a 1D manifold of signals 𝑢(𝜆𝑖𝑛𝑝) are fed into a RNN which led 

to the computation of an additive weight matrix (green arrows) and a sets of conceptors (ellipsoids) on a 

manifold 𝐶(𝜆𝑐). This manifold can be used to do interpolation (orange cross). B. Samples from the 

parametric family 𝑢(𝜆𝑖𝑛𝑝). C. 𝐶(𝜆𝑐) displayed in conceptor space (after PCA). D. Trajectories induced 

by the inputs in the space of neural activity (the initial transients are not displayed). The 2D planes 

correspond to conceptors associated with different trajectories. 


