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Summary. We introduce two novel Reservoir Computing (RC)-based approaches to design recurrent
neural dynamics that operate intrinsically at the edge of criticality, namely the Edge-of-Critical
reservoir network, and the Euler State Network. Both are based on randomized weights and are
amenable to neuromorphic hardware implementations. At the same time they show great application
potential in comparison with both conventional RC networks and fully trained recurrent networks.

1 Introduction

Reservoir Computing (RC) is a powerful technique for efficiently training Recurrent Neural Networks
(RNNs) [6]. RC exploits the inherent stability of neural dynamics by using a fixed, untrained recurrent
reservoir layer, with a trainable readout for output computation. This approach has been particularly
effective in embedded systems for distributed learning functionalities, and as a reference for neuromorphic
hardware implementations [7]. A critical aspect of RC is the development of stable dynamics in the
untrained reservoir, based on a global asymptotic stability property called the Echo State Property in
the widely known Echo State Network (ESN) model [5]. This property ensures that the reservoir develops
stable dynamics while also having a fading memory and limited state space structure. At the same time,
though, it crucially limits the ability to transmit input information through several time-steps.

Under the umbrella of RC, we introduce two approaches to enable RNN systems to develop long-
term memorization abilities, and effectively latch temporal information across long time-series. The
fundamental aspect of our proposal is to modify the recurrent equations of the reservoir system in such
a way to determine dynamics that operate by design at the edge of criticality.

2 Reservoir Computing with critical dynamics by design

Our first proposal, based on [1, 2] and called Edge-of-Critical reservoir network (ECN), consists in
modifying the mathematical formulation of the state dynamics in a leaky integrator reservoir. Specifically,
we design a reservoir layer with the following state transition function:

h(t) = (1− β)Oh(t− 1) + β ϕ(Whh(t− 1) +Wxx(t) + b). (1)

Here, h(t) and x(t) respectively denote the reservoir state and the externally applied input at time
t, Wh is the recurrent weight matrix, Wx is the input weight matrix, b is the bias vector, O is an
orthogonal matrix. Eq. 1 includes a model hyper-parameter β ∈ (0, 1] that modulates the influence of
the additive term (i.e., Oh(t − 1)) versus the non-linear update (i.e., ϕ(Whh(t − 1) + Wxx(t) + b))
in the new reservoir state. As in conventional RC, all the parameters in the above eq. 1 are randomly
generated and left untrained. However, differently from standard ESNs, the value of β can be used to
tune the proximity of the reservoir dynamics to the edge of criticality. Such a property follows from
the peculiar structure implied in the Jacobian of eq. 1, given as J(t) = (1 − β)O + βD(t)Wh, where
D(t) = diag(ϕ′(Whh(t − 1) + Wxx(t) + b)). A closer analysis reveals that all the eigenvalues of J(t)
lie in an annular neighborhood of radius βγ∥Wr∥ of the circle centered in the origin of radius 1 − β,
where γ = ∥D(t)∥. Moreover, it is possible to bound the maximum local Lyapunov exponent (MLLE)
of eq. 1, denoted by Λ, as ln

(
1 − β(∥Wh∥ + 1)

)
≤ Λ ≤ ln

(
1 + β(∥Wh∥ − 1)

)
. Leveraging its arbitrary

proximity to critical dynamics, ECN sensibly improves over ESN in terms of short-term memory (see [2])
and auto-regressive modeling of complex dynamics (see Figure 1).
Our second proposal stems from the analysis of neural networks architectures under the prism of dy-
namical systems. In our case, we focus our analysis on the operation of a continuous-time recurrent
neural system modeled by the following ODE: h′(t) = ϕ(Wh h(t) +Wx x(t) +b). We impose two types
of constraints on this ODE: stability, which is essential to preventing input perturbations from causing
poor generalization, and non-dissipativity, which is critical to avoid the development of lossy dynamics
that can lead to catastrophic forgetting of past inputs during state evolution. We thereby seek for a
critical condition under which the eigenvalues of the Jacobian of our ODE are featured by ≈ 0 real parts.
Interestingly, a simple architectural way of achieving this condition, rather than learning it, is to impose
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Figure 1: Autoregressive modeling of the multiple su-
perimposed oscillator (MSO) task with 8 frequencies.
Left: A large fine-tuned ESN of 1500 neurons and
a small fine-tuned ECN with 150 neurons have been
trained to reproduce with the feedback of the output
the MSO8 signal (dashed line). The output signals gen-
erated by ESN (blue) and ECN (orange) after various
time intervals ∆t of running in auto-generation mode
are plotted, from top to bottom, ∆t = 0, 5000, 50000.
Right: The eigenvalues of the Jacobians of the corre-
sponding trained ESN model and ECN model.
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Figure 2: Left: Autonomous reser-
voir dynamics around the origin for
a stable ESN (top), and an EuSN
(bottom). Right: Test set accu-
racy on a selection of time-series clas-
sification benchmarks, achieved by
EuSN, ESN, ESN with ring-reservoir
(R-ESN), and fully trainable RNNs
(best results among vanilla RNN,
Antisymmetric-RNN and GRU). See
further details in [3].

an antisymmetric structure to the recurrent weight matrix, i.e., Wh = W − WT . In this case, the
eigenvalues of the ODE are by construction on the imaginary axis, and the continuous system dynamics
operate intrinsically at the edge of criticality. The weight values involved in the ODE defined above are
randomly chosen in line with the RC practice. To develop our discrete-time reservoir dynamics, we solve
the ODE numerically by using the forward Euler method, resulting in the following reservoir equation:

h(t) = h(t− 1) + εϕ((W −WT − γI)h(t− 1) +Wx x(t) + b), (2)

where ε and γ are two hyper-parameters denoting, respectively, the step size of integration and the
diffusion coefficient (for stabilizing the discretization). The resulting method is called Euler State Network
(EuSN) [3]. As for the case of ECNs, the values of the hyper-parameters can be used to control the
proximity of the EuSN dynamics to the critical behavior. In this case, with D(t) = diag(ϕ′((W−WT −
γI)h(t− 1) +Wx x(t) + b)), the Jacobian of the system in eq. 2 takes the form J(t) = I+ εD(t)(W −
WT )− εγD(t). The eigenvalues of J(t) are bounded within a ball of radius ε(∥W −WT ∥) + γ) around
unity, causing the resulting MLLE to be constrained as follows: ln(1 − ε(∥W − WT ∥ + γ)) ≤ Λ ≤
ln(1 + ε(∥W − WT ∥ + γ)). While based on randomized weights as the conventional ESN, EuSN does
not suffer from lossy dynamics, and it is able to effectively preserve input information through several
time-steps (see Figure 2, left). Relevantly, this new type of architectural bias for recurrent systems allows
EuSNs to sensibly reduce the accuracy gap with fully trainable RNNs in tasks involving classification of
time-series (see Figure 2, right). The EuSN approach has also shown its effectiveness in broader contexts
related to learning on graphs (see [4]), allowing to clearly outperform state-of-the-art models in deep
graph networks.
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