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Summary. An Ising machine is a radical new computing platform that has the potential to solve 

hard optimization problems more efficiently than traditional digital computers. Unfortunately, for 

specific tasks, the relatively low success rate of finding the optimal solution remains an issue. Our 

research investigates novel annealing schemes that could drastically improve the success rate of 

these highly anticipated Ising machines. 

Combinatorial optimization problems play an important role in different industries of our society. They 

can be found in logistics, drug development, electronic circuit-design (VLSI) and even in finance. However, 

traditional computing platforms require large amounts of time and resources to find the solution to such 

optimization problems, because the amount of possible solutions increases very strongly with the number 

of variables. To solve these optimization problems more efficiently, a renewed interest in novel computing 

platforms has emerged [1]. Our research group focuses on one of the most promising platforms, called the 

Ising machine (IM) [2].  

An IM is a natural computing system that uses a network of analog artificial spins to emulate the Ising 

model of which the energy is given by 𝐻𝐼𝑠𝑖𝑛𝑔 =  −
1
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∑ 𝐽𝑖𝑗𝜎(𝑥𝑖)𝜎(𝑥𝑗)𝑖𝑗 , where 𝜎(𝑥𝑖) represents the sign of 

the i-th spin amplitude 𝑥𝑖 and 𝐽𝑖𝑗 the matrix that describes how the spins are interconnected. An optimization 

problem can then be encoded through this interconnection matrix and driven by their coupling, the spin 

network will tend to evolve towards its lowest energy state. This energy state (i.e. the ground state) then 

corresponds to the optimal solution of the encoded problem [1]. The artificial spin-network of an IM can 

be implemented in numerous ways, but all of them consist of three essential buildings blocks: a non-

linearity, a spin coupling mechanism and a feedback mechanism. This feedback signal contains two 

contributions: the self-feedback and the mutual coupling feedback. To regulate their respective strengths, 

we use two parameters, which we call here a and b. Our group has proposed and build an opto-electronic 

IM (OE-IM) that is made out of opto-electronic oscillators (OEO) [2]. The optical part of the OEO includes 

a Mach-Zehnder modulator (MZM) that takes up the role of non-linear system. In electronic part, an FPGA 

is used for calculating the spin coupling signal which is then electrically fed back to the MZM. The 

evolution of a spin amplitudes 𝑥𝑖 is described by the following equation: 

𝑥̇𝑖 = cos2( 𝑎𝑥𝑖 + 𝑏 ∑ 𝐽𝑖𝑗

𝑗

𝑥𝑗 + 𝛾 −  𝜋/4) − 1/2 

where 𝜋/4 and 1/2 are two bias terms, a and b are the previously discussed feedback strengths, 𝐽𝑖𝑗 represents 

again the interconnection matrix and 𝛾 the gaussian white noise.  

Although IMs are promising, they still face a number of challenges. One difficulty is that the success 

rate of finding the optimal solution, which depends on the value of both a and b, can be relatively small [3]. 

Physically this means that the IM has a high probability of getting stuck in a local minimum, of which the 

spin configuration does not corresponds to the desired optimal solution. As a consequence, numerous runs 

are required in order to have at least one instance that reaches the ground-state. This strongly increases the 

average time-to-solution.  

To tackle this problem, annealing schemes are being investigated as a tool to navigate around these 

local minima and increase the overall success rate of IMs [4]. These annealing schemes gradually change 

at least one feedback parameter of the system towards a certain target value. Annealing schemes typically 

operate by scanning the feedback strengths through the operating threshold of the IM, which depends on 

the value of both a and b, as there are less excited states near this region in which the IM could get stuck. 

However, there are various methods to do this. In this contribution, we use numerical simulations to study 

two of these schemes, namely linear annealing (LA) and linear adiabatic annealing (LAA). 

In a LA scheme, at least one of the two feedback parameters increases linearly with time from a start 

value towards a target value. Although we keep the noise strength fixed in our simulation, its importance 

in the dynamics of the system will decrease if we drive the IM further away from the operating threshold 



by increasing a and/or b. Our simulations indicates that when such annealing is performed slow enough, it 

is possible to significantly increase the maximum success rate of some specific benchmark problems. 

However, as mentioned, annealing will increase the time that is needed to perform a single run, meaning 

there is a trade off between finding the ground state over several runs without annealing, or doing one long 

run with annealing. At the conference, we will discuss what the optimal ratio is between the annealing time 

and the success rate.  

In the case of LAA, we change the Hamiltonian of a system over time instead of the value of the 

feedback parameters. At the start, the system is initialized in the (known) ground state of an easy-to-solve 

problem. Next, the system’s Hamiltonian is transformed linearly over time, by changing the interconnection 

matrix elements 𝐽𝑖𝑗, towards the Hamiltonian of the actual problem to be solved. This evolution is 

schematically illustrated in Fig.1. The idea behind this technique is that when the system is initialized in 

the ground state of the easy Hamiltonian, the system will remain in the ground state of an interpolated 

Hamiltonian if the transition happens slow enough. Eventually, the system should end up in the ground 

state of the target Hamiltonian. The principle of adiabatic evolution has already been proven in quantum 

mechanics but not in classical mechanics, which is the regime in which our IM operates. Therefore, we 

investigate in this contribution the computational performance of this scheme using the IM described above. 

We investigate if, and up to which extent, these types of annealing can be beneficial in classical IM by 

applying it to several benchmark tasks (e.g., biqmac-library, g-set). We quantify the performance based on 

the success rate of finding the optimal solution and the average time-to-solution. The code behind these 

numerical simulations is based on the dynamical equation of our OE-IM that was discussed above. 

To summarize, our research uses numerical simulations to investigates how LA and LLA schemes 

near the operation threshold of an OE-IM could improve the success rate and time-to-solution of different 

benchmark problems.  
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Figure 1. This figure shows a simplistic illustration of the concept of LAA. The system starts at the 

ground state configuration at t = 0 of a simple problem of which the ground state is known. As time 

increases, the energy landscape changes towards a complex landscape that contains more local minima.  


