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Summary. Quantum reservoir computing is an emerging field in machine learning with quantum
systems. Here, we establish a link between quantum properties of a quantum reservoir, namely
entanglement and its occupied phase space dimension, and its classical linear short-term memory
capacity. We find that a high degree of entanglement in the reservoir is a prerequisite for a more
complex reservoir dynamics that is key to unlocking the exponential phase space and higher short-term
memory capacity. We quantify these relations and discuss the effect of dephasing on the performance
of physical quantum reservoirs.

Figure 1: A possible physical
implementation of a quantum
reservoir computer: coupled-
cavity arrays. Image taken from
[5].

The machine learning paradigm of reservoir computing has proven
to be well-suited for various applications such as autonomous learning
and time-series prediction [1, 2]. While classically implemented reservoir
computers [3] have been researched extensively, their quantum mechan-
ical counterparts [4] only now are coming into the focus of the research
community. The promises they bring to the table are, among others:

• exponential phase space dimension scaling with system size,

• entanglement as a resource with no classical analogue.

The study of quantum reservoir computers (QRC) is now more im-
portant than ever, as with the advent of sophisticated semiconduc-
tor fabrication techniques for quantum photonic systems like coupled-
cavity arrays (see Fig. 1) QRCs are at the brink of realization.
In preparation to this, we investigate the fundamental properties
of QRCs on the basis of the transverse-field Ising model (TFIM).
Using the linear short-term memory (STM) capacity CSTM as an established, classical benchmark, we
measure the QRC’s performance in relation to several of its key figures, specifically the TFIM coupling
strength J0, the mean logarithmic negativity ĒN, and the covariance dimension Dc – the latter of which
allow to probe the intrinsic quantum properties of the QRC [6].
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Figure 2: All relations between coupling
strength J0, mean logarithmic negativity
ĒN, covariance dimension Dc and linear
short-term memory capacity CSTM.

The logarithmic negativity EN ∈ [0, 1] is given by

EN(ρ) = log2
∥∥ρΓA

∥∥
1
, (1)

where ρΓA is the partial transpose of ρ with respect to subsys-
tem A and ∥·∥1 denotes the trace norm. As an entanglement
monotone, it provides a method for quantifying entanglement
between any two bipartitions of the quantum system. Here,
we calculate the average logarithmic negativity over all bipar-
titions and the whole reservoir dynamics to obtain a single
number ĒN as a measure for the entanglement strength during
execution of the short-term memory task.

The time evolution of the QRC state can be understood
as a path in its 4N -dimensional phase space, where N is the
number of qubits in the system. To investigate, whether
the QRC actually takes advantage of the full phase space or
only evolves on a lower-dimensional manifold, we employ a
measure called the covariance dimension. For this, random
clusters from the QRC’s discretely sampled state evolution
are chosen and their spatial extent is approximated by a
principal component analysis (PCA). By counting the number
of principal components which are above a certain threshold,

the covariance dimension for each cluster is then determined. The overall covariance dimension Dc is
obtained by averaging over all individual covariance dimensions of the clusters.



Figure 3: Influence of dephasing on the 3-
qubit QRC for different coupling strengths.

As can be seen for the example of a 3-qubit TFIM in Fig. 2,
all four aforementioned properties are directly linked to each
other. Upon increasing the qubit coupling strength, we find
a stronger mean entanglement of the QRC (see quadrant I)
and a higher dimensionality of the phase space submanifold
(see quadrant II). We explain this by the fact that the input
injection method applied here for the execution of the STM
task is given by projective measurement, which by definition
destroys the entanglement of the input qubit with the rest of
the system. As we keep the input injection frequency constant,
the increased speed of the reservoir dynamics resulting from
larger coupling strengths allows the quantum system to build
up more entanglement and explore a higher dimensional phase
space before the input injection collapses the state again.
Interestingly, the stronger expression of these quantum properties also results in a better performance
of the QRC in the classical linear short-term memory task as shown in quadrants III and IV of Fig. 2,
respectively.

In real-world scenarios, the interaction of the QRC with the environment plays an important role and
should therefore be investigated systematically. For this matter, we introduce a channel to the system,
which simulates a loss of quantum entanglement due to interaction with the environment. This so-called
dephasing channel can be tuned by the dephasing strength γ. While we see a decrease in performance of
strongly coupled TFIM-QRCs when increasing the dephasing, the opposite effect appears in the weakly
coupled regime for a small amount of dephasing, as can be seen in Fig. 3. This poses the possibility of
using the ubiquitous decoherence effects in noisy intermediate-scale quantum devices as a resource for
quantum reservoir computing, which are otherwise undesired e.g. for gate based quantum computing.

In summary, we make a first step to assess the influence of quantum effects on the performance of
QRCs in classical tasks. Future research will concern the question of how to translate between descriptions
of coherent quantum systems on the one hand and nonlinear network dynamics on the other. We aim to
identify effects of tunable parameters also for photonic semiconductor systems such as the coupled-cavity
array.
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