
Distance-Based Delay Networks∗

Stefan Iacob1, Joni Dambre1

1. IDlab-AIRO, Ghent University-Imec

Summary. Biological neurons have finite propagation speed and non-zero distances between each
other, which results in variable, distance-based delays. We implemented this phenomenon in echo
state networks, by modelling reservoir units as points in a physical space. We optimized the distribu-
tion of neuron locations using an evolutionary algorithm. The resulting networks outperform regular
ESNs on the NARMA-10 task.

Signal delay inherently exists in all physical and biological systems. Delay is often perceived as a
physical limitation that needs to be overcome. However, inter-neuron delay is an essential computational
feature of the brain. Biological neurons have a physical position in space, and neuron axons have a non-
zero length and a finite propagation speed. The alignment of delays can for example be used to synchronize
incoming signals and has an effect on plasticity [1]. In contrast, until recently implementations of artificial
neural networks (ANNs) consisted of abstract computational units with an inter-neuron communication
speed of exactly one simulation step, thus lacking distributed, location-based inter-neuron delay. In
recent work, we have introduced distance-based delays in recurrent neural networks [2]. We take echo
state networks (ESNs) as a starting point for our implementation. ESNs [3] are a type of rate-based
recurrent neural network with randomly sampled and fixed weights. Instead of training these “reservoir”
weights, a read-out layer is trained based on a teacher signal, usually using linear regression. While
originally introduced as an alternative way to train RNNs, nowadays ESNs are mainly used as model
systems for physical reservoirs. The ESN reservoir activity is described by

x(n+ 1) = (1− a)x(n) + a · f(Wresx(n) + bres +Winv(n)) (1)

where x(n), a, Wres, Win, b, f , and v(n) are respectively, the firing frequencies at timestep n, the decay
parameter, the recurrent reservoir weights, the input weights, the bias weights, the activation function,
and the input at timestep n.

We implement distance-based delay networks (DDNs) by modelling reservoir nodes as points in a 2D
or 3D space. The discretized distances between nodes determine the amount of simulation steps of delay
that is applied. As such, an increase in firing rate from neuron A is only perceived at the input for neuron
B after d steps, with d being the length of the connection between neuron A and B. This is illustrated in
Figure 1.

Figure 1: Diagram describing the flow of activity between DDN reservoir neurons A and B, with weight
wAB and a connection length of d. xA(n) and xB(n) refer to the firing frequency of neuron A and B at
time n.

The neuron activity update rule for DDNs is described by the following equation, which is an extension
of the conventional ESN equation.

x(n) = (1− a)x(n− 1) + aσ(y(n− 1)) (2)

y(n) =

Dmax∑
d=0

(
Wres

D=dx(n− d) +Win
D=dv(n− d)

)
+ bres (3)

∗This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Sk lodowska-Curie grant agreement No 860949.



x(n), a, σ(·), v(n), Dmax, and bres are respectively, the firing frequencies of all neurons at time n, the
decay parameter, the sigmoid activation function, the task input at time n, the delay applied by the
longest connection, and the bias weights. WD=d is a partial weight matrix, or a masked weight matrix,
where all elements corresponding to connections with a delay different from d are set to 0.

In general, any reservoir can be seen as a sample from a distribution defined by a set of hyperparame-
ters. For conventional ESNs, these hyperparameters are the connectivity of the network, the scaling of the
reservoir weights, input weights and bias weights, and the leakage parameter. Additionally, in DDNs the
delays in the reservoir need to be optimized to match the task at hand. Hence, neuron locations (on which
the delays are dependent) need to be optimized. In order to reduce the total amount of hyperparameters,
we do not optimize each neuron’s coordinate. Instead, we sample neuron locations from a multimodal
Gaussian distribution (Gaussian Mixture Model, or GMM), with a fixed number of components. We treat
the means and covariance matrices of this distribution as hyperparameters, to be optimized along with the
conventional ESN hyperparameters. However, because we know from which component the neurons are
drawn, the reservoir is naturally clustered. Thus, we can define the conventional ESN hyperparameters on
a per-cluster basis. For example, instead of one global scaling parameter for all reservoir weights, we now
have a scaling parameter for each cluster. Instead of having a single connectivity paramater, we have a
connectivity matrix containing connectivity parameters for each cluster pair, and a diagonal that specifies
the within-cluster connectivity. Although our baseline ESNs do not make use of neuron location, we can
nonetheless cluster ESN neurons such that we can define hyperparameters for each cluster (pair). This is
to ensure a fair comparison between the baseline ESNs and DDNs. We used CMA-ES, an evolutionary
strategy, to optimize the hyperparameters of both network types. At each generation of the evolution
run, candidate hyperparameters are generated, from which several DDN/ESN reservoirs are sampled. the
read-outs of these reservoirs are trained using a NARMA-10 training set. We use the reservoir validation
performance a fitness measure. An evolution run was performed for both the baseline ESN and DDN
models, using single-cluster models and four-cluster models. The performance on a NARMA-10 test set
of the networks drawn from the best hyperparameter sets can be seen in Table 1.

Most importantly, we showed that DDNs significantly and consistently outperformed conventional
ESNs. Moreover, the use of multiple clusters further improved both baseline models and DDN models.

Table 1: Average normalized root mean squared error (NRMSE) on the test set of 40 networks sampled
from the best hyperparameter sets found during the evolution. Bold font indicates the best performing
model type.

Type K NRMSE (test)
Baseline 1 0.1588± 0.0124
DDN 1 0.0639± 0.0018
Baseline 4 0.0848± 0.0056
DDN 4 0.0391± 0.0025

Our findings have important implications for the field of physical reservoirs, suggesting it should be
possible to match inherently present delays to specific tasks.

Furthermore, in biological networks, delays influence synaptic plasticity. In subsequent work, we
explored the effects of delays on local plasticity in DDNs by introducing a delay-sensitive local learning
rule. This proved to be beneficial for learning capacity, while outperforming its delay-less counterpart.

References

[1] H. A. Swadlow and S. G. Waxman, “Axonal conduction delays,” Scholarpedia, vol. 7, no. 6, p. 1451,
2012, revision #125736. doi: 10.4249/scholarpedia.1451.

[2] S. Iacob, M. Freiberger, and J. Dambre, “Distance-based delays in echo state networks,” in Intelligent
Data Engineering and Automated Learning – IDEAL 2022, H. Yin, D. Camacho, and P. Tino, Eds.,
Cham: Springer International Publishing, 2022, pp. 211–222, isbn: 978-3-031-21753-1.

[3] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural networks-with
an erratum note,” Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, vol. 148, no. 34, p. 13, 2001.


