GMap : An Open-source Efficient
Compiler for Mapping any Network onto any Neuromophic Chip

Jimmy Weber, Melika Payvand

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland.

Summary. Here, we address the problem of mapping networks onto neuromorphic systems by proposing
a versatile, easy-to-use and open-source compiler that can efficiently map any arbitrary connectivity matrix
to various hardware architectures, while respecting their constraints. The compiler enables the research
community to evaluate the compatibility of pre-trained networks with existing hardware or assess the
feasibility of implementing a given network onto new hardware architectures. By accommodating diverse
hardware configurations, our solution enhances flexibility in deploying neural networks to edge computing.

Event-driven neuromorphic devices offer a promising solution to the stringent power and memory require-
ments of embedded systems at the edge of the sensors. These systems consist of parallel processing neurons
that receive and transmit information in the form of all-or-none events or spikes, similar to the biological
systems they are inspired by. To scale these systems, multi-core architectures are used where the number of
neurons per core, the number of connections, and connectivity schemes between cores serve as typical design
parameters.

Often, the neural networks for certain tasks are trained off-chip, and are then transferred onto the chips for
inference. However, given the diverse architectures of neuromorphic systems [I], performing specific hardware-
aware training for each system can be highly time and effort consuming. An alternative solution is to directly
map the pre-trained network onto the chips, but this introduces a mapping problem. Ideally, we need a method
to transfer a hardware-agnostic trained network to a chip while respecting its constraints. Figure 1 illustrates
an example of this mapping problem.

Pretrained Network Examples of network impossible to map Example of network potentially possible to map

NN - \ 4 \
\%%@ oy >~
\7\ X Combinatorial posifb\‘\;tl;:‘s‘mg
[~ \y, \\><, . / \ \

Mapping RN \
\2/3\7\'0 \2/3\7 6\
\ﬁl;af
Constrained Hardware 5
c) Example d) Example

not fitting fitting

\VNI

L1 1 1 1 1
Core 1 Limited Core 2 a) Too many b) Too many

All-to-all Inter-core ~ All-to-all

Intra-core connections Intra-core edges nodes

connections connections

Network max fan-in = 5 Network #Nodes = 9
But HW max fan-in = 4 But HW #Nodes = 8

T 1
I I | | I I Require more Use properly

Inter-core connections the HW resources
l Legend : — Violated constraints (unavailable resources) — Inter-core connection — Intra-core connection :::Unused connection ‘

Figure 1: Example of mapping a network onto a constrained hardware. In this example, the hardware has
two cores with all-to-all intra-core connections and only sparse inter-core connections. Certain networks are
impossible to map onto the hardware (cases a. and b.), while others may be potentially mappable depending on
their labeling. Among all the combinatorial possibilities of labeling for the latter, some fit within the hardware
constraints (case d.), while others do not (case ¢.).

Existing solutions for this compilation problem tend to be highly specific to certain hardware or rely on
approximations of hardware constraints [4], such as detecting highly-clustered groups of neurons for multi-core
chip mapping. These solutions may not be optimal for an arbitrary custom-built hardware configuration. This
highlights the need for more generalized mapping techniques that can efficiently map neural networks to a
variety of neuromorphic hardware architectures, enabling greater flexibility in deploying neural networks to
edge computing devices.

To address the mapping problem in neuromorphic systems, we propose GMap, a versatile, easy-to-use,
and open-source compiler capable of mapping any arbitrary connectivity matrix to any arbitrary hardware

architecture while respecting its constraints. This enables the research community to easily evaluate the
compatibility of pre-trained networks with existing hardware or assess the feasibility of implementing a given
network on new hardware architectures. Our algorithm can map networks onto hardware platforms characterized
by the number of cores, neurons per core, and maximum fan-in and fan-out. Furthermore, our solution can
accommodate more complex routing architectures, as demonstrated by its effectiveness on the mixed-signal
DYNAP-SE chip [2].

GMap is an adaptation of the simulated annealing approached presented in [3] to identify the best mapping.
The algorithm is a meta-heuristic optimization based on probabilistic approach for approximating the global
optimum. It starts with a wide exploration of the search space and gradually transitions to a greedy search
as the algorithm progresses towards convergence. It is important to note that it may not always be possible to
find a mapping that satisfies all hardware constraints. In such cases, the compiler raises an error, and returns
the mapping with the fewest constraint violations.

Given that the algorithm is a heuristic search method, it provides a sub-optimal solution. As shown in
Figure 2, to benchmark the accuracy of the solution, we compared it to the actual optimal solution, found using
a brute-force technique. However, this is a combinatorial optimization problem, so ground truth comparison
was only possible with small networks. In contrast, the proposed algorithm has a complexity of O(n?), making
it efficient for larger networks.

%]

C

-% —— Baseline
S —— Ground truth
o 150+

[o]

N

()

£ 100

G

@ 501

Q

€

3

=2

2 3 4 5 6 7 8 9 10
Average node degree

Figure 2: Comparison of the number of constraints violated for the mapping of networks with different
average node degree. The show-case is for mapping a 32-node small-world network onto a 4-core neuromorphic
hardware. The baseline represent a random mapping and the ground truth is the optimal result obtained
with the brute-force approach.

In conclusion, we have developed a general algorithm for mapping any neural networks on any neuro-
morphic hardware. The input to the algorithm are the architectural parameters of the hardware and the
network connectivity, and the output is whether the network maps on the hardware and if yes, a solution
for the mapping. This easy-to-use tool for the neuromorphic community is open-source and can be found on
GitHub/EIS-Hub/GMap-compiler.

References

[1] Arindam Basu, Lei Deng, Charlotte Frenkel, and Xueyong Zhang. Spiking neural network integrated
circuits: A review of trends and future directions. In 2022 IEEE Custom Integrated Circuits Conference
(CICC), pages 1-8. IEEE, 2022.

[2] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore architecture with
heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps). IEEFE
transactions on biomedical circuits and systems, 12(1):106-122, 2017.

[3] Peter JM Van Laarhoven, Emile HL, Aarts, Peter JM van Laarhoven, and Emile HL Aarts. Simulated
annealing. Springer, 1987.

[4] Chao Xiao, Jihua Chen, and Lei Wang. Optimal mapping of spiking neural network to neuromorphic
hardware for edge-ai. Sensors, 22(19):7248, 2022.

https://github.com/EIS-Hub/gmap-compiler

